В соответствии с пятилетним Тематическим планом ВВС по орбитальным и гиперзвуковым самолетам практические работы по крылатой космонавтике в нашей стране в 1965 г. были поручены ОКБ-155 А.И.Микояна, где их возглавил 55-летний Главный конструктор ОКБ Глеб Евгеньевич Лозино-Лозинский. Тема по созданию двухступенчатого воздушно-орбитального самолета (в современной терминологии - авиационно-космической системы - АКС) получила индекс "Спираль". Советский Союз серьезно готовился к масштабной войне в космосе и из космоса...
Когда знакомишься с материалами по проекту "Спираль", невольно ловишь себя на мысли, что, если не обращать внимания на пожелтевшие машинописные страницы и несколько устаревшую терминологию, перед тобой не документы сорокалетней давности, а совершенно секретная конструкторская документация сегодняшнего дня, причем разработанная с учетом как минимум десятилетней перспективы развития авиационно-космических систем! Творческая дерзость конструкторов просто восхищает!
Так что же представлял собой этот уникальный сверхсекретный советский проект космического оружия Лозино-Лозинского?
В соответствии с требованиями заказчика конструкторы взялись за разработку многоразового двухступенчатого ВОС, состоящего из гиперзвукового самолета-разгонщика (ГСР) и военного орбитального самолета (ОС) с ракетным ускорителем. Старт системы предусматривался горизонтальный, с использованием разгонной тележки, отрыв происходил на скорости 380-400 км/ч. После набора с помощью двигателей ГСР необходимых скорости и высоты происходило отделение ОС и дальнейший разгон происходил с помощью ракетных двигателей двухступенчатого ускорителя, работающих на фторо-водородном (F2+H2) топливе.
Боевой пилотируемый одноместный ОС многоразового применения предусматривал использование в вариантах дневного фоторазведчика, радиолокационного разведчика, перехватчика космических целей или ударного самолета с ракетой класса "космос-Земля" и мог применяться для инспекции космических объектов. Вес самолета во всех вариантах составлял 8800 кг, включая 500 кг боевой нагрузки в вариантах разведчика и перехватчика и 2000 кг у ударного самолета. Диапазон опорных орбит составлял 130...150 км по высоте и 450...1350 по наклонению в северном и южном направлениях при стартах с территории СССР, причем задача полета должна была выполняться в течение 2-3 витков (третий виток посадочный). Маневренные возможности ОС с использованием бортовой ракетной двигательной установки, работающей на высокоэнергетических компонентах топлива - фтор F2 + амидол (50% N2H4 + 50% BH3N2H4), должны были обеспечивать изменение наклонения орбиты для разведчика и перехватчика на 170, для ударного самолета с ракетой на борту (и уменьшенном запасе топлива) - 70...80. Перехватчик также был способен выполнить комбинированный маневр - одновременное изменение наклона орбиты на 120 с подъемом на высоту до 1000 км.
После выполнения орбитального полета и включения тормозных двигателей ОС должен входить в атмосферу с большим углом атаки, управление на этапе спуска предусматривалось изменением крена при постоянном угле атаки. На траектории планирующего спуска в атмосфере задавалась способность совершения аэродинамического маневра по дальности 4000...6000 км с боковым отклонением плюс/минус 1100...1500 км.
В район посадки ОС должен был выводиться с выбором вектора скорости вдоль оси взлетно-посадочной полосы, что достигалось выбором программы изменения крена. Маневренность самолета позволяла обеспечить посадку в ночных и сложных метеоусловиях на один из запасных аэродромов территории Советского Союза с любого из 3-х витков. Посадка совершалась с использованием турбореактивного двигателя ("36-35" разработки ОКБ-36), на грунтовой аэродром II класса со скоростью не более 250 км/ч.
Согласно утвержденному Г.Е.Лозино-Лозинским 29 июня 1966 года аванпроекту "Спирали", ВОС с расчетной массой 115 тонн представлял собой состыкованные воедино крылатые широкофюзеляжные многоразовые аппараты горизонтального взлета-посадки - 52-тонный гиперзвуковой самолет-разгонщик (получивший индекс "50-50"), и расположенный на нем пилотируемый ОС (индекс "50") с двухступенчатым ракетным ускорителем - блоком выведения.
В основном варианте на ГСР установлены четыре воздушно-реактивных двигателя (ВРД), работающие на жидком водороде. ГСР использовался для разгона ВОС до гиперзвуковой скорости, соответствующей М=6 (около 1800 м/сек), затем на высоте 28...30 км происходило разделение ступеней, после чего ГСР возвращался на аэродром, а ОС с помощью ЖРД блока выведения выходил на рабочую орбиту. Для ускорения летной отработки самолета-носителя предусмотрена установка четырех ВРД (Р-39-300), работающих на керосине и имеющих примерно аналогичный расход воздуха.
ВОС позволял вывести на полярную орбиту высотой 130-150 км при стартовом параллаксе до 750 км полезный груз массой до 10,3 т при использовании на ГСР силовой установки на жидком водороде и груз 5,0 т с силовой установкой ГСР на керосине. Из-за неосвоенности в качестве окислителя жидкого фтора для ускорения работ по ВОС в целом в качестве промежуточного шага предлагалась альтернативная разработка двухступенчатого ракетного ускорителя на кислородно-водородном топливе и поэтапное освоение фторного топлива на ОС - сначала использование высококипящего топлива на азотном тетраксиде и несимметричном диметилгидразине (АТ+НДМГ), затем фторо-аммиачное топливо (F2+NH3), и только после накопления опыта планировалось заменить аммиак на амидол.
Камни не исполняют желаний. Их исполняем мы сами, четко следуя однажды выбранному пути. - майор Кальтер - Свинцовый закат
Таким образом, коллектив ОКБ-155 А.И.Микояна летом 1966 года принялся за разработку воздушно-орбитального самолета, который благодаря особенностям заложенных конструктивных решений и выбранной схеме самолетного старта позволял реализовать принципиально новые свойства для средств выведения военных нагрузок в космос: - вывод на орбиту полезного груза, составляющего по весу 9% и более от взлетного веса системы; - уменьшение стоимости вывода на орбиту одного килограмма полезного груза в 3-3,5 раза по сравнению с ракетными комплексами на тех же компонентах топлива; - вывод космических аппаратов в широком диапазоне направлений и возможность быстрого перенацеливания старта со сменой необходимого параллакса за счет самолетной дальности; - самостоятельное перебазирование самолета-разгонщика; - сведение к минимуму потребного количества аэродромов; - быстрый вывод боевого орбитального самолета в любой пункт земного шара; - эффективное маневрирование орбитального самолета не только в космосе, но и на этапе спуска и посадки; - самолетная посадка ночью и в сложных метеоусловиях на заданный или выбранный экипажем аэродром с любого из трех витков. В то же время конструкторы уже на этапе аванпроекта видели пути дальнейшего совершенствования системы. В первую очередь существенного повышения эффективности ВОС планировалось достичь разработкой многоразового ускорителя с ПВРД со сверхзвуковым горением, что позволяло в перспективе создать полностью многоразовый комплекс.
Конструкторы надеялись, что указанные особенности ВОС обеспечат его экономическую целесообразность, оперативное решение военных задач и эффективное использование околоземного космического пространства в военных целях.
Для натурной обработки конструкции и основных систем, которые в дальнейшем должны быть применены на боевых самолетах, в аванпроекте был детально проработан экспериментальный пилотируемый одноместный орбитальный самолет многоразового применения, который с целью ускорения работ, не дожидаясь разработки ГСР, должен был выводится на орбиту с помощью ракеты-носителя "Союз" (изделие 11А511 разработки ОКБ-1 С.П.Королева); и аналог орбитального самолета, запускаемый с самолета-носителя Ту-95 аналогично ракете Х-20.
Камни не исполняют желаний. Их исполняем мы сами, четко следуя однажды выбранному пути. - майор Кальтер - Свинцовый закат
ГСР представлял собой самолет-бесхвостку длиной 38 м с треугольным крылом большой переменной стреловидности по передней кромке типа "двойная дельта" (стреловидность 800 в зоне носового наплыва и передней части и 600 в концевой части крыла) размахом 16,5 м и площадью 240,0 м2 с вертикальными стабилизирующими поверхностями - килями (площадью по 18,5 м2) - на концах крыла. Для увеличения путевой устойчивости плоскости килей наклонены внутрь на 30 по отношению к плоскости симметрии самолета. Крыло набрано сверхтонкими ромбовидными профилями с переменной относительной толщиной от 2,5% у корня до 3% на конце. Основные геометрические характеристики самолета-разгонщика приведены в таблице.
Управление ГСР осуществлялось с помощью рулей направления на килях, элевонов и посадочных щитков. Для увеличения путевой устойчивости на гиперзвуке в хвостовой части был дополнительно установлен складываемый на взлете (цельноповоротный?) подфюзеляжный гребень.
Самолет-разгонщик был оборудован 2-местной герметичной кабиной экипажа с катапультируемыми креслами. Для улучшения обзора "вперед-вниз" (до 140) при посадке носовая часть фюзеляжа перед кабиной пилотов выполнена отклоняемой вниз на 50; впоследствии это конструктивное решение успешно использовалось при создании сверхзвуковых пассажирских самолетов первого поколения (советского Ту-144 и англо-французского "Конкорда") и стратегического ударно-разведывательного самолета Т-4 ("Сотка") разработки ОКБ П.О.Сухого.
Взлетая с разгонной тележки, для посадки ГСР использует трехопорное шасси с носовой стойкой, оборудованной спаренными пневматиками размером 850x250, и выпускаемой в поток в направлении "против полета". Основная стойка оснащена двухколесной тележкой с тандемным расположением колес размером 1300x350 для уменьшения требуемого объема в нише шасси в убранном положении. Колея основных стоек шасси 5,75 м.
В верхней части ГСР в специальном ложе крепился собственно орбитальный самолет и ракетный ускоритель, носовая и хвостовая части которых закрывались обтекателями. На ГСР в качестве топлива использовался сжиженный водород, двигательная установка - в виде блока четырех турбореактивных двигателей (ТРД) разработки А.М.Люлька тягой на взлете по 17,5 т каждый, имеющих общий воздухозаборник и работающих на единое сверхзвуковое сопло внешнего расширения. При пустой массе 36 т ГСР мог принять на борт 16 т жидкого водорода (213 м3), для размещения которого отводилось 260 м3 внутреннего объема.
Особенностью двигателей являлось использование паров водорода для привода турбины, вращающей компрессор ТРД (как вспоминал позднее Г.Е.Лозино-Лозинский, "...альтернативные варианты ГСР прорабатывались с другими видами силовых установок, однако до проекта, достаточно глубоко проработанного, дело так и не дошло"). Испаритель водорода находился на входе компрессора. Таким образом, была успешно решена проблема создания силовой установки без комбинирования ТВРД, ГПРД и ТРД.
"Водородный" ТРД был уникален - наша промышленность ни до, ни после этого ничего похожего не делала (экспериментальные образцы подобных двигателей впоследствии разрабатывались лишь в Центральном институте авиационного моторостроения (ЦИАМ) и ни разу не доводились до постройки хотя бы опытного образца).
Техническое задание на его создание получило ОКБ-165 А.М.Люльки (ныне - НТЦ имени А.М.Люльки в составе НПО "Сатурн"). Тому были свои причины. В ОКБ функционировал мощный Перспективный отдел. Его начальником в то время был А.В.Воронцов; в состав отдела входили перспективно-расчетный отдел (начальник Ю.Н.Бычев, в его подчинении находилось около 15 сотрудников) и перспективно-конструкторский отдел (начальник К.В.Кулешов; численность этого отдела была на два-три человека больше).
Двигатель получил индекс АЛ-51 (в это же время в ОКБ-165 разрабатывался ТРДФ третьего поколения АЛ-21Ф, и для нового двигателя индекс выбрали "с запасом", начав с круглого числа "50", тем более что это же число фигурировало в индексе темы).
В первые дни, когда ОКБ А.Люльки только получило тех/задание на двигатель и его схема была не ясна, из Вид сзади на сопло внешнего расширения ЦИАМа приехал С.М.Шляхтенко (через год он стал начальником института) с неким иностранным журналом (возможно, Flight или Interavia), в котором была опубликована схема "испытанного в США ракетно-турбинного пароводородного двигателя (РТДп)". Судя по небольшой сопроводительной статье, двигатель имел весьма привлекательные характеристики, в т.ч. очень высокий удельный импульс.
Шляхтенко возбужденно потрясал журналом и восклицал: "Смотрите - они уже и сделали, и испытали, и полетит не сегодня-завтра! А мы чем хуже?" Конструкторы приняли вызов.
Первые же проработки показали, что действительно схема очень привлекательная и параметры получаются просто фантастические. На базе вспыхнувшего энтузиазма довольно быстро "нарисовали" Головной том технического проекта, который был подписан в 1966 г. и отправлен в ОКБ-155 Г.Е.Лозино-Лозинскому.
В дальнейшем проект постоянно дорабатывался. Можно сказать, что он находился в состоянии "перманентной разработки": постоянно вылезали какие-то неувязки - и все приходилось "доувязывать". В расчеты вмешивались реалии - существующие конструкционные материалы, технологии, возможности заводов и т.д. В принципе, на любом этапе проектирования двигатель был работоспособен, но не давал тех характеристик, которые хотели получить от него конструкторы. "Дотягивание" шло в течение еще пяти-шести лет, до начала 1970-х, когда работы по проекту "Спираль" были закрыты.
Предельные тяговые характеристики газотурбинного воздушно-реактивного двигателя традиционной схемы диктует температура газа на турбине: если она выше температуры плавления материала лопаток, то турбина просто сгорит. А из предельной температуры газа на турбине естественным образом можно получить предельную скорость полета аппарата с такой двигательной установкой: чем быстрее летишь, тем горячее воздух в воздухозаборнике и перед компрессором.
Перейти на "двигатель комбинированного цикла" (т.е. до определенной скорости он работает как ТРД, а затем газотурбинный тракт закрывается и двигатель переходит на режим "прямоточки") тогда не решились. На первый взгляд такая двигательная установка казалась сложнее, а на тех технологиях была еще и значительно тяжелее. Фактически разработчики планировали создать "обычный" турбокомпрессорный "движок", но только разогнать его до предельных характеристик. "Вылизыванием" идеальных характеристик в данном случае не занимались: экономичность у ТРДФ столь велика по сравнению с ЖРД, что даже если газотурбинный двигатель будет хуже идеала в 2 раза, то он все равно будет все еще впятеро экономичнее ракетного.
При "тогдашних" конструкционных материалах в ТРДФ могли обеспечить нормальное сгорание в камере и разницу температур между воздухозаборником и турбиной в диапазоне скоростей до М=4. В принципе даже сейчас эта граница поднялась не сильно: при использовании самых совершенных технологий - керамики, композитов, охлаждаемых лопаток турбины - ее можно приподнять еще, скажем, до М=5, не больше. Для керосина это предел. Водород же хорош тем, что у него гигантский охлаждающий потенциал, который можно использовать для охлаждения воздуха в воздухозаборнике (во-первых) и лопаток турбины (во-вторых).
В проекте РТДп даже этого не нужно было делать: двигатель отличался от классического турбореактивного тем, что турбина убрана из газовоздушного тракта, ее вращает горячий водород, а она, в свою очередь, приводит во вращение компрессор, который подает воздух в камеру сгорания. При разделенных трактах можно значительно поднять давление в сопле, а следовательно, и экономичность (удельный импульс) двигателя. Поскольку горячий водород берется из теплообменника (который либо выставлен в воздухозаборник, в горячий поток набегающего воздуха, либо вписан в камеру сгорания), основная проблема РТДп, как представляется, была не в каких-то экзотических конструкционных материалах, а в эффективном теплообменнике. Он должен быть спроектирован так, чтобы не очень загромождать тракт и не создавать больших аэродинамических потерь, но в то же время обеспечивать прогрев водорода. Собственно, исследования в этой области велись и ведутся в ЦИАМе все эти годы, но манящий конструкторов "идеальный" теплообменник пока так и не разработан.
Двигатель для промежуточного варианта ГСР, работающий на керосине, проектировало ОКБ-300 (с 1966 года - Московский машиностроительный завод "Союз"; до 1973 г. его возглавлял С.К.Туманский, а затем О.Н.Фаворский. Ныне предприятие носит наименование АМНТК "Союз"). Это был одноконтурный турбореактивный двигатель с форсажной камерой (ТРДФ). Новая разработка получила индекс Р39-300. Работами руководил, скорее всего, Григорий Львович Лифшиц, в то время - первый заместитель генерального конструктора ОКБ-300. Техническое предложение на двигатель было выдано разработчикам "Спирали" (заказчику) в 1966 г.
После закрытия темы "Спираль" работы по данному двигателю в ОКБ-300 продолжения не имели: кроме ГСР "Спирали" ему не было другого применения.
Вторым принципиальным новшеством Вид снизу на интегрированный гиперзвуковый воздухозаборникГСР являлся интегрированный регулируемый гиперзвуковой воздухозаборник, использующий для сжатия практически всю переднюю часть нижней поверхности крыла и носовую часть фюзеляжа.
Торможение набегающего потока начиналось с расстояния 10,25 м до воздухозаборника за счет специально спрофилированной нижней поверхности фюзеляжа, наклоненной к потоку под углом атаки 40. На расстоянии 3,25 м (в продольном направлении) до воздухозаборника нижняя поверхность фюзеляжа увеличивает местный угол атаки на 100 - эту точку можно считать началом горизонтально расположенной поверхности (клина) торможения собственно воздухозаборника. На расстоянии 1,27 м до нижней "губы" воздухозаборника клин торможения вновь увеличивает угол атаки еще на 100. Нижняя "губа" воздухозаборника расположена на расстоянии 1,255 м эквидистантно нижней поверхности фюзеляжа.
Преодоление теплового барьера для ГСР обеспечивалось соответствующим подбором конструкционных и теплозащитных материалов. В ряде поздних публикаций указана возможность разработки в дальнейшей перспективе на базе ГСР "6-махового" пассажирского самолета. Однако аванпроект не упоминает никакого "гражданского" использования ГСР, а для военных целей предусматривалось автономное применение только в качестве дальнего гиперзвукового стратегического самолета-разведчика. ГСР-разведчик в "керосиновом" варианте силовой установки должен был иметь максимальную скорость М=4,0...4,5 и дальность (при М=4,0) до 6000-7000 км, а использование водородного топлива позволяло достичь максимальных скорости М=6,0 и дальности 12000 км (при крейсерской скорости М=5,0).
Самолет-разгонщик был первым гиперзвуковым летательным аппаратом с воздушно-рективными двигателями, который исследовался в ЦАГИ на скоростях до Мmax=4...6. Два варианта модели (одна из них показана справа) прошли полный цикл аэродинамических исследований в аэродинамических трубах ЦАГИ в 1965-75 годах. Наиболее существенной частью этой работы были исследования по методике испытаний моделей с протоком воздуха через мотогондолы силовой установки на гиперзвуковых скоростях полета. Результаты многочисленных трубных исследований подтвердили правильность выбора основных конструктивных решений.
На 40-м конгрессе Международной астронавтической федерации (FAI), проходившей в 1989 году в Малаге (Испания) представители американского Национального управления по аэронавтике и исследованию космического пространства (NASA) дали самолету-разгонщику высокую оценку, отметив, что он "проектировался в соответствии с современными требованиями".
Камни не исполняют желаний. Их исполняем мы сами, четко следуя однажды выбранному пути. - майор Кальтер - Свинцовый закат
Блок выведения представляет собой одноразовую двухступенчатую ракету-носитель, расположенную в "полуутопленном" положении в ложементе "на спине" ГСР. Для ускорения разработки аванпроектом предусматривалась разработка промежуточного (на топливе водород-кислород, H2+O2) и основного (на топливе водород-фтор, H2+F2) вариантов ракетного ускорителя.
При выборе топливных компонентов проектировщики исходили из условия обеспечения вывода на орбиту возможно большего полезного груза. Жидкий водород (H2) рассматривался как единственный перспективный вид горючего для гиперзвуковых воздушных аппаратов и как один из перспективных горючих для ЖРД, несмотря на его существенный недостаток - малый удельный вес (0,075 г/см3). Керосин в качестве топлива для ракетного ускорителя не рассматривался.
В качестве окислителей для водорода могут быть кислород и фтор. С точки зрения технологичности и безопасности кислород более предпочтителен, но его применение в качестве окислителя для водородного топлива приводит к значительно большим потребным объемам баков (101 м3 против 72,12 м3), то есть к увеличению миделя, а, следовательно, лобового сопротивления самолета-разгонщика, что уменьшает его максимальную скорость расцепки до М=5,5 вместо М=6 при фторе.
При выборе фтора в качестве окислителя для ракетного ускорителя сыграл свою роль и тот фактор, что при применении фтора (расчетный удельный импульс 460 сек) выводимая на орбиту полезная нагрузка составляет 9-10% от взлетного веса системы, а при применении кислорода (удельный импульс 455 сек) - только 7,5-8%.
Общая длина ракетного ускорителя (на фторо-водородном топливе) 27,75 м, включая 18,0 м первой ступени с донным стекателем и 9,75 м второй ступени с полезной нагрузкой - орбитальным самолетом. Вариант кислородно-водородного ракетного ускорителя получился на 96 см длиннее и на 50 см толще.
Основные параметры вариантов ракетного ускорителя приведены в таблице. В аванпроекте предполагается, что фтороводородный ЖРД тягой 25 т для оснащения обеих ступеней ракетного ускорителя будет разрабатываться в ОКБ-456 В.П.Глушко на базе отработанного ЖРД тягой 10 т на фторо-аммиачном (F2+NH3) топливе (впоследствии в открытой печати этот двигатель получил наименование РД-301).
Отличительной чертой двухступенчатого ракетного ускорителя является наплыв размахом 3,5 м, который является конструктивным продолжением фюзеляжа ОС и располагается на всей длине ракетного ускорителя, фактически превращая ускоритель в двухступенчатую крылатую ракету-среднеплан. Наплыв служит для облегчения процесса отделения (расцепки) ускорителя от ГСР, создавая, подобно крылу сверхмалого удлинения, дополнительную "отрывающую" подъемную силу.
Первая ступень ракетного ускорителя оснащена четырьмя ЖРД тягой по 25 тс каждый. На этапе полета ускорителя в составе ГСР выступающая часть сопла каждого ЖРД закрывается коническим обтекателем, а донный срез ступени для уменьшения аэродинамического сопротивления закрывается сбрасываемым обтекателем-стекателем. Корпус первой ступени образован несущими баками для компонентов топлива (окислитель F2 спереди, топливо H2 - сзади), имеющих общую совмещенную гермостенку.
Вторая ступень ускорителя имеет сложную не осесимметричную компоновку, обусловленную утопленным положением орбитального самолета внутрь внешнего контура ступени. Фактически топливная арматура ступени, включая бак с топливом, "размазан" вокруг хвостовой части орбитального самолета. Основу силовой схемы второй ступени составляет силовая рама, на которую снизу (в стартовом положении ГСР при соответственно горизонтальном положении ступени - сзади) крепится маршевый ЖРД тягой 25 т, а сверху (соответственно спереди) - на разрывных связях - орбитальный самолет. Вокруг ЖРД расположен тороидальный топливный (H2) бак. Под орбитальным самолетом (при горизонтальном положении ступени) расположен конформный бак с окислителем (F2). Носовая часть и "спина" орбитального самолета на этапе полета с ГСР закрыты сбрасываемыми обтекателями.
Поскриптум (почти серьезно :)
Россия - родина слонов!
При знакомстве с материалами по "Спирали" часто возникало ощущение "де жа вю", т.е. казалось, что где-то что-то подобное уже встречалось... И верно! При ближайшем рассмотрении еще раз убеждаешься в мысли, что все самые интересные идеи впервые появились у нас, русских.
Не верите?! Тогда сравните на рисунке гиперзвуковой самолет-разгонщик "Спирали" и космическую королевскую яхту принцессы с планеты Набу из первого фильма голливудской киноэпопеи "Звездные войны" (Star Wars). Пора наконец-то восстановить наши приоритеты в рамках "...далекой, далекой галактики".
Камни не исполняют желаний. Их исполняем мы сами, четко следуя однажды выбранному пути. - майор Кальтер - Свинцовый закат
Приветствую тебя гость! Что-бы иметь более широкий доступ на сайте и скачивать файлы, советуем вам зарегистрироваться, или войти на сайт как пользователь это займет менее двух минут.Авторизация на сайте